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A Remark on Schrfdinger Operators on 
Aperiodic Tilings 
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We prove that for a large class of Schr6dinger operators on aperiodic tilings the 
spectrum and the integrated density of states are the same for all tilings in the 
local isomorphism class, i.e., for all tilings in the orbit closure of one of 
the tilings. This generalizes the argument in earlier work from discrete strictly 
ergodic operators on 12(2 ~u) to operators on the /2-spaces of sets of vertices of 
strictly ergodic tilings. 

KEY W O R D S :  Discrete Schr6dinger operators; integrated density of states, 
spectrum, Penrose tilings, projection method, unique ergodicity; minimality. 

1. I N T R O D U C T I O N  

For  any Penrose tiling r one can consider  a discrete Schr6dinger  opera to r  
H~ on l-~(V~), the /Z-space  of  the set of  vertices V~ of  t defined by 

( H ~ b ) ( n ) =  ~ ~ , (m)+  V(n)~b(n) (1.1) 
< m,,O 

where the summat ion  extends over  the nearest  neighbors  of  n. The poten-  
tial 1I(17) is real and depends  on the type of  the vertex 17, or, more  generally, 
on the ne ighborhood  of  the vertex up to some radius  r ( independent  of  n). 
Opera to r s  of  this form have been studied as possible  models  of  electronic 
proper t ies  of quasicrystals  (for references, see ref. 1). In a previous paper ,  I~> 
we proved t h a t  the integrated density of  states of H~ exists for every 
Penrose  tiling t and  is independent  of  t. The p roo f  in ref. 1 uses the "self- 
s imilari ty" of Penrose tiling and applies to Schr6dinger  opera to rs  on every 
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(local isomorphism) class of tilings that are self-similar in the way Penrose 
tilings are self-similar. 

It is well known (see, e.g., ref. 2) that for ergodic discrete Schr6dinger 
operators on 12(7/d) the spectrum and the integrated density of states are 
almost surely independent of the realization of the potential. In ref. 1 we 
proved they are actually independent (not just almost surely) of the poten- 
tial for strictly ergodic operators (i.e., operators for which the closure of the 
set of all translates of the potential is uniquely ergodic and minimal with 
respect to translations). 

This note generalizes the latter result to Schr6dinger operators on 
strictly ergodic tilings. For self-similar tilings this gives a new proof that the 
integrated density of states is independent of the tiling. The new proof is 
more general: it also applies to Schr6dinger operators on tilings defined by 
the projection method (see, e.g., refs. 3 and 4). Moreover, for both self- 
similar tilings and tilings defined by the projection method we get the new 
result that the spectrum is independent of the tiling. 

Schr6dinger operators on l'-(Z a) all act on the same Hilbert space. But 
operators H~ and H~, act on different Hilbert spaces--unless r and r' differ 
only by a translation; moreover, there is no unitary action of translations 
on the Hilbert space. This is the reason why the proofs given in ref. 1 for 
strictly ergodic operators on 12(Z a) need modification before they apply to 
operators on the l 2 spaces of sets of vertices of aperiodic strictly ergodic 
tilings. 

Before stating and proving the result we describe which tilings we are 
dealing with. 

2. STR ICTLY  E R G O D I C  T I L I N G S  

A tiling of 11~ d is a covering of R d by closed sets (tiles) such that 
the interiors of the tiles are pairwise disjoint. We assume (mainly for 
simplicity) that the tiles are convex polytopes matching face to face and 
that modulo translations there are finitely many different kinds of tiles. 

Let r be such a tiling. A patch of r is a finite set of tiles occurring in r. 
Denote by CL the cube of side L centered at 0. For A c R a let Ne(A) be 
the number of copies of the patch P inside A. The tiling r is called strictly 
ergodic if for every patch P the frequency ne := limL_ ~ L-dNL(CL + a) 
exists uniformly in a s R  a and ne>O. Self-similar tilings and tilings 
generated by the projection method are strictly ergodic in this sense, as was 
shown in refs. 5 and 4, respectively. 

For x e  R e denote the translated tiling r + x  by T~z (here and below 
a tiling and its translates are considered different tilings). Close the set 
{T,.r [xER d} in the metric d ( r , r ' )=min (1 ,  e), where e is the smallest 



Schr6dinger Operators on Aperiodic Tilings 853 

number such that there is a vector x of Euclidian norm [[xl[ ~< e such that 
r and T,.r' coincide on the sphere of radius 1/e around 0. This gives a shift- 
invariant set f2~ that is compact as a closed subset of a complete metric 
space, t6,7) 

The set f2~ is strictly ergodic with respect to translation in the sense 
"strictly ergodic" is used in ergodic theory, Cs) i.e., uniquely ergodic and 
minimal. In particular, we have that for all continuous functions on f2~ 

lim L -a Ic f(T,.a) dx=ffd# uniformlyin aeI2~ (2.1) 
L ~ ,ztz L 

(unique ergodicity) and that #(A) > 0 for every open A c D (minimality for 
uniquely ergodic systems). These two statements are the analogs of 
Propositions 7.1 and 7.2 in ref. 1, respectively. 

3. R E S U L T  

Let /2  be a strictly ergodic tiling dynamical system. Denote the set of 
vertices of r e /2  by V~. A finite subset of V~ will be called a vertexpattern. 
For r~>0, the r-environment (1) E,(A) of a vertexpattern A is defined as 
E,(A) := {x~ V~I IIx-yH ~<r for some y~  v~}. 

Let H~ be as in (1.1). Denote its resolution of the identity by E~(. ). Let 
XL~12(V~) denote the characteristic function of the set of vertices lying 
within the cube CL; so XL implicitly depends on 3. For each r ~/2 define 
measures k~_ on R by k~(A):=L-dtr(E~(A)zI,). There is an e > 0  such 
that Hx-  y[[ > 2e for all x, y e V~ and all ~ ~ g2. Let B~ := {x ~ R d [ [[x][ ~< e}. 
Let ~b be a continuous, nonnegative real function on •d with support in Be 
and ~ r dx--1.  For continuous real functions f of compact support on R 
define f o n / 2  by 

f(v) := {~O (v)(fi~'f(H~) ~v) if there is a v e V~ such that v e B~ 

otherwise 
(3.1) 

The integrated density of states is the distribution function of the measure 
k defined by ~fdk := ~fdp. 

Theorem.  Let /2 be a strictly ergodic tiling dynamical system and 
let H~ be as in (l.1). Then for all re I2 :  

(i) k~, ~ k vaguely as L ~ oo. 

(ii) The spectrum of H~ is equal to the topological support of k. 

8 2 2 / 8 1 / 3 - 4 - 2 2  
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Proof. We prove (i); the proof of (ii) is then analogous the proof  of 
Proposition 7.4 in ref. 1. 

We have to show that for every real continuous function f on ~ of 
compact support limL_ ~ I fdk~ = ~fdp. Now 

f f dk~L = L-'I tr(f(H~) XL) = L-a ~,, (O~,,f(H~) ~o) 

= L - d r  f(Txv) dx+O(L -l) 
a C  L 

where the last equality uses that the number of vertices within distance e 
of the boundary of CL is of order L-~. Moreover, the O(L -l) term can be 
bounded uniformly in v e ~ since ]lu -v[ I  > e for all u, v e V, and all r e Q. 
Hence (i) follows from (2.1) if we can show that f is continuous on ~2. 

There exists a constant K such that I[H,[I < K - 1  for all reY2. Then 
for all z e~2, the spectrum of H~ is strictly contained in [ - - K ,  K]. For 
r/> 0, let p be a polynomial such that If(z) - p(z)l <~ ~l for all z e [ --K, K]. 
Then [If(H~)-p(H~)I[ <~rl in the operator norm on 12(V,) for all ~eg2. 
Since (fir, H~fi,,) depends on r only through the environment Er(v) of v up 
to radius r, the quantity (fi, p(H~)gv) depends only on E,,r(v), if p is 
of degree m. If d(r, r')~< 1/R, then z and r '  coincide on B~ apart from a 
translation over x with [Ixll ~< 1/R. So V~ c~ BR and V~, n BR are the same 
vertexpattern, up to translation, and we can identify their/2-spaces. Hence 
(~v,p(H~) ~,) = (fi~,p(H~,) fi,,) if d(r, r ')  ~< I_/R with R >mr and veB~. 
Since q/ is continuous on R d it follows that f is continuous on/2.  1 

The theorem can be generalized. The proof  applies verbatim to the 
"vertex-pattern invariant operators" introduced in ref. 1. Also, one could 
drop the finite-range condition in the definition of vertexpattern invariant 
operators. It is sufficient to require that (H~) A is strongly continuous in 
r e  s on 12(A) for every vertexpattern A. 
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